

PROGRAMME DE FORMATION

Modélisation 3D (CAO) avec Fusion 360 pour impression 3D FDM avec Prusa i3 MK3S+ en E-learning

Certification professionnelle:

"Conception et design de pièces et d'assemblages 3D Paramétriques" Formalisa - Fiche RS 6037

Modélisation 3D (CAO) avec Fusion 360 pour impression 3D FDM avec Prusa i3 MK3S+ - E-learning

Objectifs

Être capable de modéliser en 3D une pièce simple ou complexe et réaliser sa production à l'aide d'une imprimante 3D Prusa i3 mk3S+

Public

Toute personne (particulier ou professionnel) souhaitant acquérir les compétences nécessaires à la réalisation d'un projet de Modélisation 3D et d'impression 3D à dépôt de filaments sur une imprimante 3D performante.

Durée

30h de contenu sur notre plateforme e-learning Netforme Académie (accessible 1 an) + 2,5h de visioconférence individuelle avec un formateur

3110,00 € TTC (coût formation)

+ 384,00 € TTC (coût certification)

PR-CAOIMP-MK3-ELEARNING

Formation réalisée en e-learning

Modélisation 3D (CAO) avec Fusion 360 pour impression 3D FDM avec Prusa i3 MK3S+ - E-learning

Prérequis

- Connaissance des formes géométriques de base
- Être à l'aise avec l'environnement informatique
- Avoir un ordinateur (portable ou de bureau) avec une souris à disposition
- Avoir accès à une connexion internet (débit > 300KBits/sec)

Modalités d'évaluations

- Evaluations formatives (quiz) en cours de formation
- **Examens pratiques** à mi-parcours et fin de parcours (pour les parcours certifiants)

Sanction

- **Certification professionnelle** (pour les parcours certifiants) « Conception et design de pièces et d'assemblages 3D paramétriques » Certifieur : **FORMALISA** - RS6037
- Certificat de réalisation de fin de formation

Prise en compte du handicap

Analyse et adaptabilité, individualisation des contenus pour une prise en compte des besoins et contextes particuliers.

Financement

100 % de nos formations sont finançables (CPF, AIF, OPCO ...)

OBJECTIFS PÉDAGOGIQUES

Modélisation 3D (CAO) avec Fusion 360 pour impression 3D FDM avec Prusa i3 MK3S+ - E-learning

Présentation générale de l'impression 3D

- Découvrir l'historique de l'impression 3D
- Identifier et décrire les différents procédés d'impression 3D
- Avoir des connaissances approfondies sur les procédés à dépôt de filaments (FDM), résines photosensibles (SLA – DLP) et frittage laser de poudre (SLS)
- Identifier les besoins auxquels l'impression 3D répond et ses avantages visà-vis d'autres procédés de fabrication
- Découvrir le marché mondial, européen et français du secteur de l'impression 3D et ses principaux acteurs

Modélisation 3D sous fusion 360 - Initiation

- Identifier et décrire ce qu'est la Conception Assistée par Ordinateur
- Identifier les principaux logiciels de CAO et leurs applications
- Découvrir la méthode de construction d'une pièce à l'aide d'un logiciel de CAO
- Modéliser des pièces mécaniques simples ou complexes :
 - Maitriser l'interface, les menus, la navigation dans le logiciel :
 - ✓ Zone graphique
 - √ Time Line
 - √ Arborescence
 - ✓ Menus
 - √ Fonctions
 - √ Orbite et vues
 - Réaliser des esquisses, de les définir et de les contraindre :
 - √ Création d'esquisses, définition de plan support
 - ✓ Edition de l'esquisse, utilisation des outils d'esquisse
 - ✓ Contraindre l'esquisse, cotation et contraintes
 - Appliquer une opération de création de volume :
 - √ Extrusion
 - √ Révolution
 - ✓ Perçage
 - √ Réseaux
 - √ Symétries
 - Modifier ces volumes à l'aide des fonctions du logiciel :
 - ✓ Congés
 - √ Chanfreins
 - Modéliser un prototype au moyen des outils de modélisation 3D dédiés :

Optimiser la modélisation en vue d'une production par impression 3D Enregistrer son travail et l'exporter au format STL

Validation du modèle STL

- Identifier et décrire ce qu'est un fichier STL
- Découvrir le rôle d'un fichier STL dans un procédé d'impression 3D
- Identifier les principales erreurs de maillage d'un fichier STL et leur impact sur l'impression 3D
- Paramétrer et réaliser la réparation et l'optimisation d'un fichier STL

Opération de tranchage sous PrusaSlicer

- Identifier et décrire l'impact de la procédure de Slicing dans un projet d'impression 3D FDM et connaître les principaux logiciels disponibles
- Savoir naviguer dans le logiciel PrusaSlicer, support pédagogique
- Comprendre et décrire le fonctionnement d'un logiciel Slicer
- Identifier les paramètres du logiciel et leur impact sur les résultats d'impression
- Identifier, décrire et mettre en oeuvre les principales fonctionnalités du logiciel :
- √ Importation de modèles STL
- ✓ Optimisation du placement des pièces
- ✓ Gestion et optimisation des paramètres de l'imprimante 3D à utiliser
- ✓ Gestion et optimisation des paramètres du(des) matériau(x) à utiliser
- √ Gestion et optimisation des paramètres d'impression de la pièce à produire
- ✓ Obtention du fichier Gcode et exportation
- ✓ Récupération du temps d'impression et de la quantité de matière utilisée

Utilisation et entretien de la Prusa i3 MK3S+

- Identifier et décrire le fonctionnement des différents organes d'une imprimante 3D FDM
- Transférer des fichiers d'impression vers et depuis l'imprimante 3D
- Identifier, décrire et lancer une procédure de calibration de l'imprimante 3D
- Identifier, décrire et lancer une procédure de chargement / déchargement d'un matériau sur l'imprimante 3D
- Lancer l'impression 3D d'une pièce
- Lancer une procédure d'arrêt en cours d'impression / de reprise d'impression
- Retirer la pièce de l'enceinte de fabrication une fois l'impression achevée
- Reconditionner l'imprimante 3D pour une future impression
- Identifier les principaux risques d'échecs d'impression
- Mettre en place les actions correctives en cas d'échecs d'impression
- Effectuer les opérations d'entretien de l'imprimante 3D
- Effectuer les principales opérations de maintenance préventives et curatives

Les différents filaments d'impression 3D et leurs usages

- Identifier et décrire le procédé de fabrication des filaments pour impression 3D FDM
- Découvrir les différentes familles de filaments sur le marché et leurs spécificités techniques :
- ✓ Propriétés mécaniques
- ✓ Propriétés chimiques
- ✓ Propriétés thermiques
- ✓ Avantages et inconvénients vis-à-vis des autres matériaux
- ✓ Paramètres d'impression particuliers à prendre en compte
- √ Coût
- Choisir le matériau adapté à une application donnée

Assemblages 3D sous fusion 360 - Initiation

- Concevoir des assemblages paramétriques 3D :
- ✓ Assembler des composants de manière logique
- √ Contraindre chaque composant d'un assemblage
- ✓ Réaliser un éclaté présentant l'ensemble des composants et leur visibilité
- Réaliser les plans des pièces et assemblages :
 - ✓ Réaliser un plan d'assemblage complet
- ✓ Réaliser une nomenclature et l'intégrer au plan

Principaux problèmes d'impression et leurs solutions

- Reconnaitre les principaux problèmes pouvant apparaître lors d'une impression 3D FDM
- Identifier la cause ayant conduit à l'apparition de ce phénomène
- Apporter les solutions (mécaniques ou informatiques) afin d'éliminer l'apparition du phénomène

Les opérations de post-traitement en impression 3D FDM

- Identifier et décrire les différents états de surface bruts en fonction des paramètres d'impression choisis
- Identifier et décrire les principales techniques de post-traitement des pièces en fonction du matériau utilisée :
 - ✓ Opérations de post traitement obligatoire
 - ✓ Opérations de post traitement facultatif (visuel, mécanique, chimique, thermique)

PLANNING

Modélisation 3D (CAO) avec Fusion 360 pour impression 3D FDM avec Prusa i3 MK3S+ - E-learning

INSCRIPITION À LA FORMATION	DEBUT DE FORMATION	PENDANT 3 SEMAINES	JOUR MI PARCOURS	PENDANT 2 SEMAINES	JOUR FIN DE PARCOURS	JUSQU'À UN AN APRÈS DÉBUT DE FORMATION
Procédure administrative	Envoi des codes d'accès à la plateforme Netforme Académie	Présentation générale de l'impression 3D Modélisation 3D sous Fusion 360 - Conception d'une pièce	Visio "mi parcours" 1 heure avec le formateur sur Zoom	Modélisation 3D sous Fusion 360 - Assemblages, Eclatés, Mise en plan	Visio "fin de parcours" 1 heure avec le formateur	Validation du modèle STL Opération de tranchage sous PrusaSlicer
						Utilisation et entretien d'une Prusa i3 MK3S+
Choix de la date de début de la formation Choix de la date du jour de mi parcours Choix de la date du jour de fin de parcours	visio "introduction à la formation" 30 minutes avec le formateur		Passage de l'examen de "mi-parcours"		Passage de l'examen de "fin de parcours"	Les différents filaments d'impression 3D et leurs usages
						Les opérations de post- traitement en impression 3D FDM
						Principaux problèmes d'impression et leurs solutions
Signature de la convention de formation					Questionnaire de satisfaction	+ 200 exercices de modélisation 3D

CONTACT

Service Formations

(Informations et inscriptions)

Raphaël Levy Ingénieur impression 3D et responsable de la formation

Tel: 06 42 96 50 50

Mail: formations@netforme.fr

Service Administratif

(Administration et facturation)

Mail : contact@netforme.fr
Site internet : https://www.netforme3d.fr

Siège Social

12 Place Jules Ferry, 84400 Apt

N° de déclaration d'activité en tant qu'organisme de formation : 93840452184

Identifiant Datadock : 0073168

Référencé au catalogue qualité de Pôle Emploi

SIRET: 51336320000041